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Abstract

Wec developed aparallel, numericall y accurate and stable, and computationally efli-
cient finite-diffcrence incompressible Navicr-Stokes (N-S) fluid flow solver. The solver runs
on both sequential and massively parallel computers. The numcrical method used hereisa
second-order projection method (Bellet. al [1]) on astaggered grid, A multigrid scheme is
used to speed up the solutions of velocity and pressure equations at each time step. A domain-
decomposition strategy is used for parallclizing both the projection method and the multigrid
scheme on fine and coarse grids. The solver runs on any (logical) rectangular processor
meshes. The parallel solver was implemented in C with Intel NX and M Pl interfaces for mes-
sage-passing The code is highly modular and it can be used either as a stand-alone flow solver
and or a template code which can be adapted or expanded to a specific application, Numerical
results and parallel performances of our code on Intel Delta and Paragon arc reported.

1. The Projection Mcthod and | fs Parallel Iimplementation

The idea of projection method for solving incompressible Navicr-Stokes equations
was firsi described in a paper by Chorin [2]. Bellet, a extended the method to second-order in
time and used a Godunov-type schieme in discretizing the convection term for numerical sta-
bility. Projection method is atype of operator-split ting method, which, in solving the N-S
equal ions, separates the solutions of velocit y and pressure fields with an iterative procedure.
In particular, a each time step, the momentum equations arc solved first for an intermediate
velocity field without the correct pressure field and therefore no incompressibility condition is
enforced; Theintermediate velocity field is then “corrected” by a projection step in which we
solve a pressure equation and then usc the computed pressure to produce a (more) divergence-
frec velocity field, Our projection step, which makes usc of the highly efficient multigrid
solver, is mathecmatically equivalent to but different from what describedin] 1]. This predic-
tion-correction type proccdurc is usually repeated afcw times until reasonably good velocity
and pressure fields have been reached for that time step. In each time step of computing an N-
dimensional (N = 2 or 3) viscous flow problem using the second-order projection method, wc
need to solve at Icast N Halmholtz equations for velocity and onc Poisson equation for pres-
sure. A fast multigrid elliptic solver can thus be used to greatly improve the computational
performance of the flow solver.

Our code was designed to be a general-purpose incompressible flow solver on a rect-
angular grid. The computations in thc flow solver is parallclized with a domain-decomposition
approach. For processing on the physical (finest) grid, explicit schemes can be naturally com-
puted in parallcl with some exchange of information at grid partition boundaries. What takes
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more work in parallel implementation is the solutions of Halmholtz and Poisson eguations
with amultigrid scheme. Wc usc afull V-cycle multi grid scheme (Briggs [3]) with red-black
relaxation in our paralel multigrid solver, Since some of the coarse grids arc distributed in
subsets of” working processors which contain the physical finest grid, some extra work is
nceded for processing on those coarse grids. Our strategy isto sct up an hierarchy of (logical)
processor meshes corresponding to the hierarchy of multigrid. The first fcw finer grids usually
arc mapped to the original processor mesh. This approach avoids global communications for
processing on coarse grids and the processing pattem remains the same on all grids.

2, Numerical and Parallel Performances

The parallel 2D N-S solver has been tested on a smooth model problem and it shows
a sccmd-order convergence rate, as expected. The parallel solver has also been tested on a
number of flow problems, including a2 viscous driven-cavily flow and an inviscid jet flow
in adoubly periodic box. The scaling performance of the solver on Intel Delta and Paragon is
shown below, using up to 256 processors with the largest global grid of 4096x4096. It can be
seen that the flow solver scales very well on these machines for moderate sizes of grid in each
processor. For future work, wc plan to extend the parallel 213 flow solver to 3D cases and gen-
eralizc il 1o deal with problems with variable density and temperature variations.

Scaling Performance of the Parallel N-S Solver
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